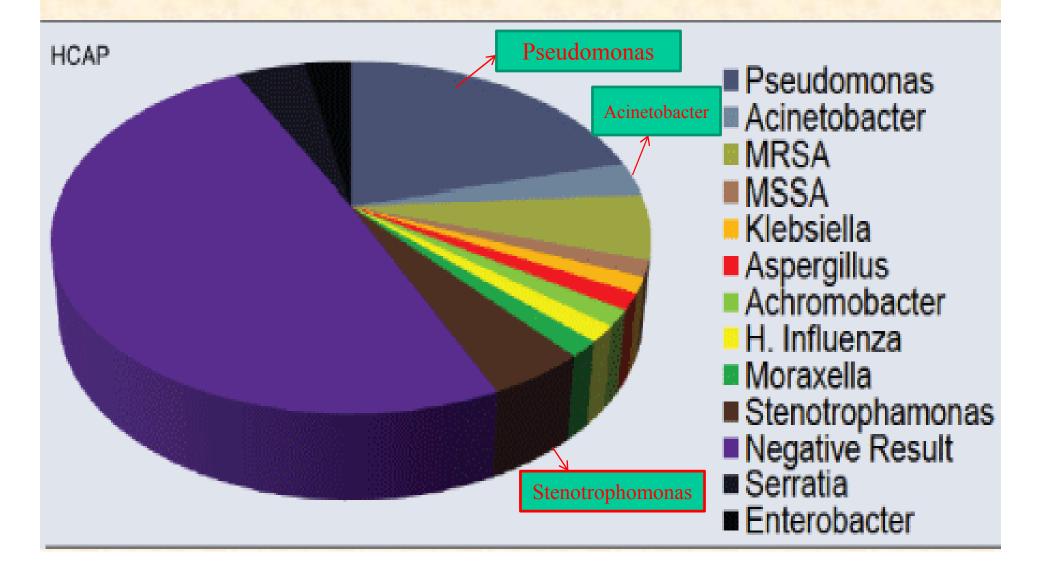
Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria

Khoa Hô Hấp 1 BS: Lê Thị Kiến Trúc

Contents

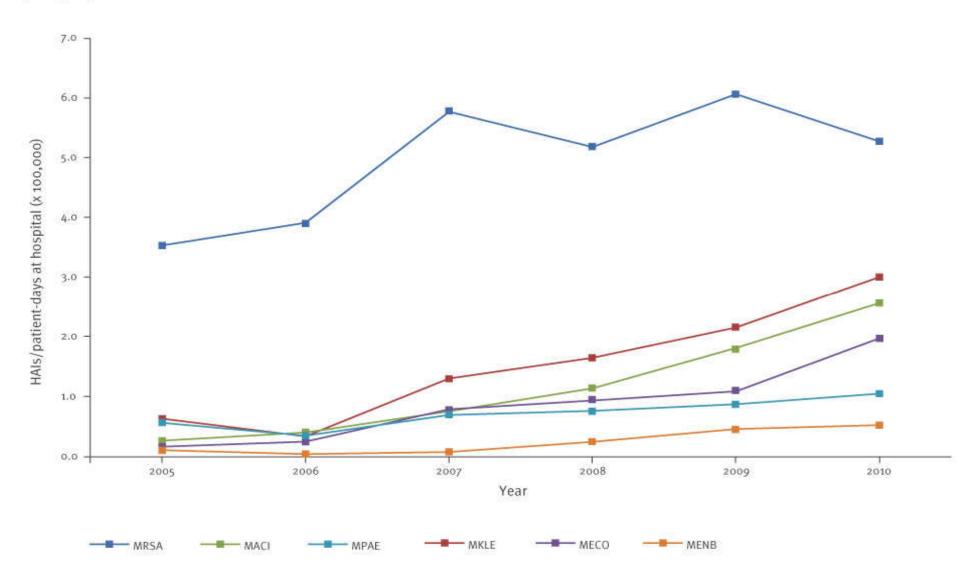
- 1. Overview of nosocomial pneumonia
- 2. Advantages and disadvantages of IV- Colistin.
- 3. Evidences of aerosolized colistin in MDR nosocomial.
- 4. Recommendations for the use of AS-Colistin
- 5. Conclusions.

The major HAIs


CDC 2015:

- Catheter-associated urinary tract infections (CAUTI; 40%)
- Ventilator-associated and healthcare-associated pneumonia (25%),
- Catheter-associated bloodstream infections (CABSI; 10%),
- And surgical site infections (SSI)

Agents of nosocomial pneumonia


- Ps. aeruginosa
- MRSA
- Acinetobacter baumanii
- Stenotrophomonas maltophila

Agents of nosocomial pneumonia CDC 2015

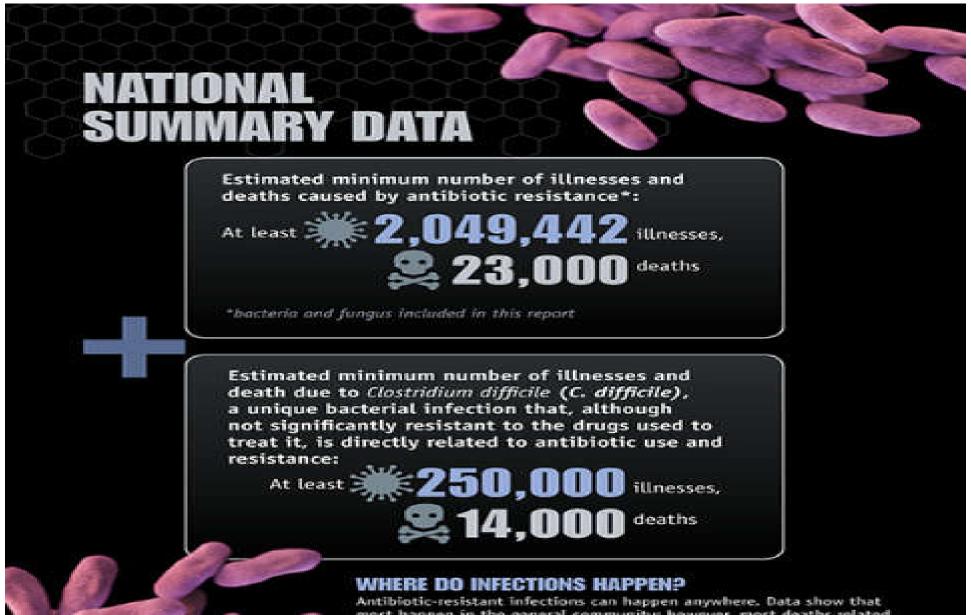
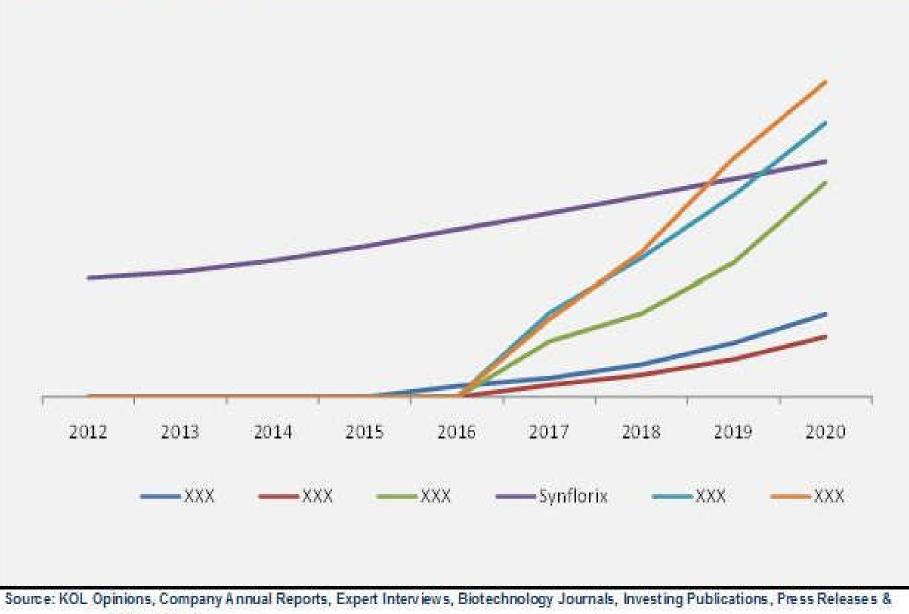


FIGURE 1

Annual incidence rates of reported hospital-acquired infections due to multidrug-resistant organisms in Hungary, 2005–10 (n=8,732)

HAI: healthcare-associated infection; MACI: multidrug-resistant Acinetobacter baumannii; MECO: multidrug-resistant Escherichia coli; MENB: multidrug-resistant Enterobacter sp.; MKLE: multidrug-resistant Klebsiella sp; MPAE: multidrug-resistant Pseudomonas aeruginosa; MRSA: methicillin-resistant Staphylococcus aureus.

Antibiotic-resistant infections can happen anywhere. Data show that most happen in the general community; however, most deaths related to antibiotic resistance happen in healthcare settings, such as hospitals and nursing homes.

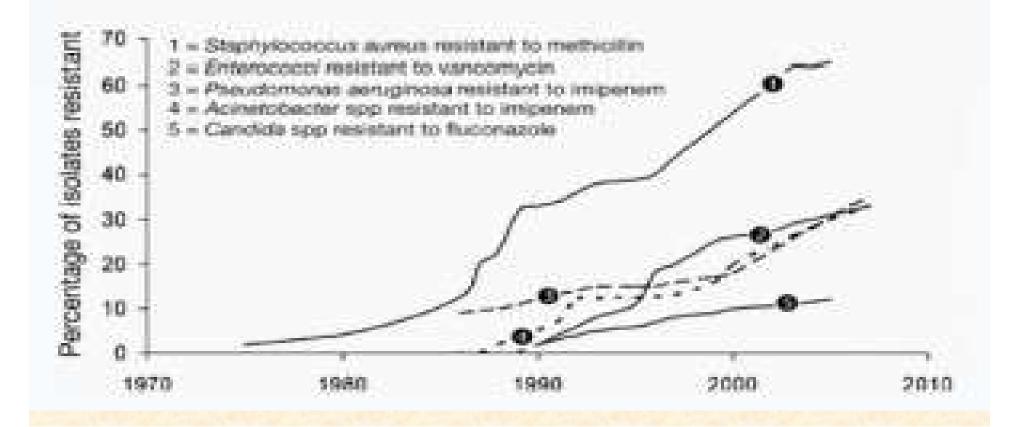

U.S. Department of Health and Human Services Control and Prevention

Pathogen

Mortality

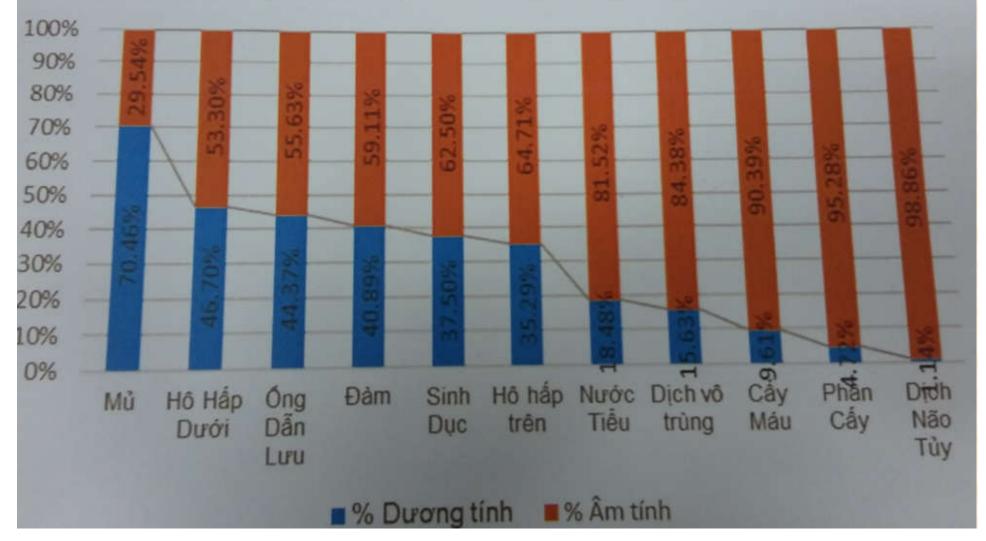
P.aerug or Acinetobacter Other organisms 71% 41%

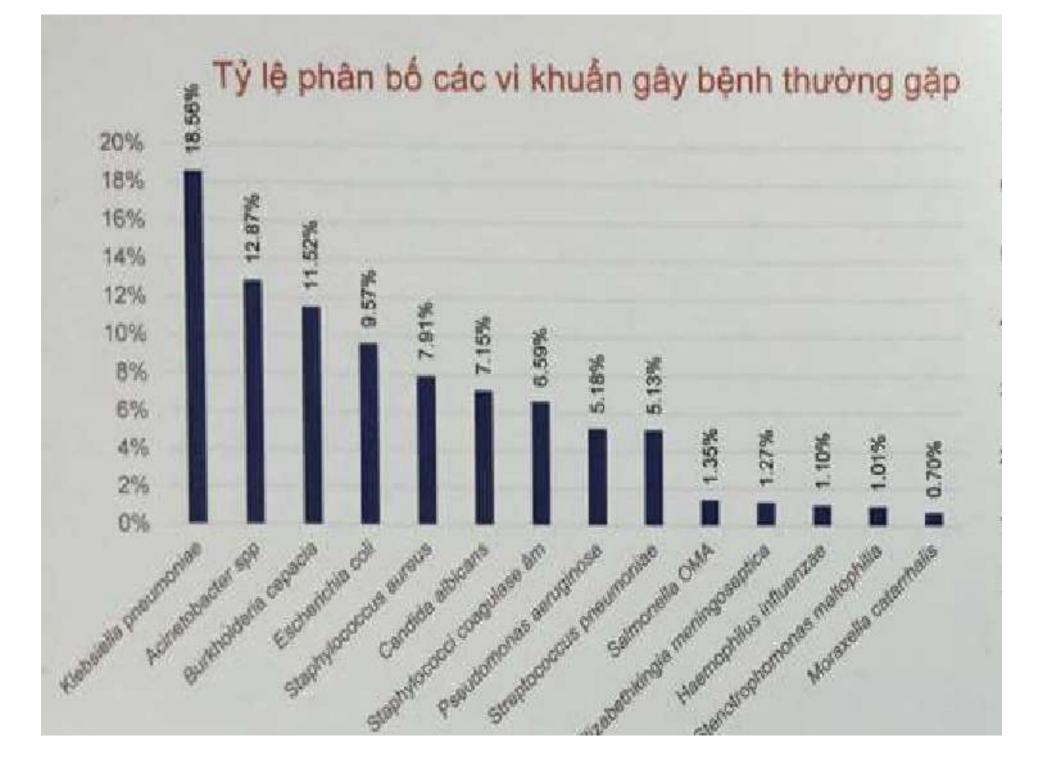
Global Pipeline Analysis for Hospital Acquired Pneumonia Drugs Market Revenue, 2012 – 2020 (USD Million)


TMR Analysis

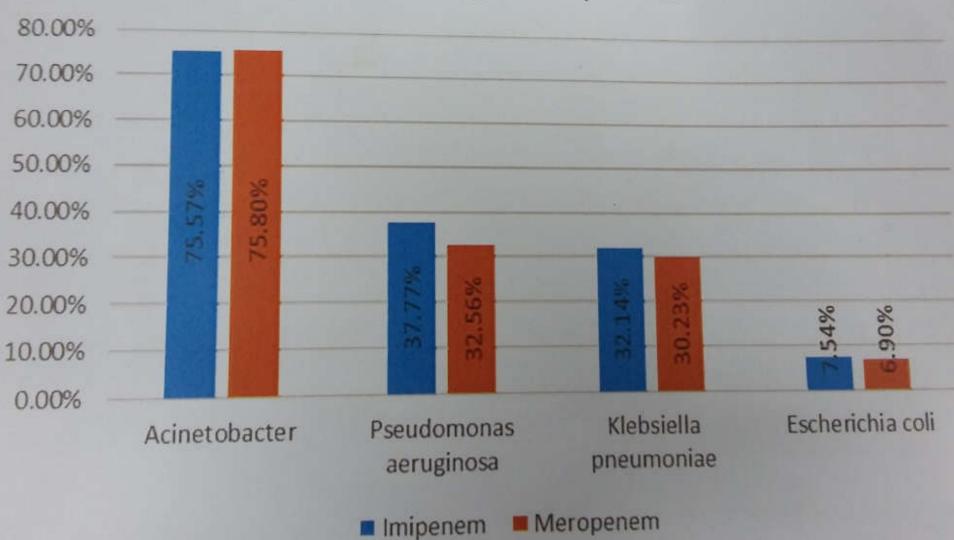
Consequence ?

- 0.5 2% of hospitalized patients.
- #1 cause of death due to nosocomial infections.
- Mortality 25 50%
- Antimicrobial resistance increasing


MDR situation in nosocomial pneumonia


Antimicrobial Resistance for Selected Pathogens over Time

Thống kê 6 tháng đầu năm 2016 tại BV Nhi Đồng 2


Tỷ lệ dương tính theo bệnh phẩm

Thông kê 6 tháng đầu năm 2016 tại BV Nhi Đồng 2

Tỷ lệ kháng Carbapenem

Thống kê 6 tháng đầu năm 2016 tại BV Nhi Đồng 2

BẢNG ĐỀ KHÁNG KS CỦA CÁC VI KHUẨN THƯỜNG GẠP 6 THÁNG ĐẦU NĂM 2016

Tỉ lệ đề kháng KS của các VK từ 01/12/2015 – 30/05/2016	Ampicillin	Penicillin	Oxacillin (Cefoxitin)	Amox-clavulanic	Ampi-sulbactam	Pipe-tazobactam	Ticar-clavulanic	Cefo-sulbactam	Cefepime	Cefetaxime/Cefiriaxone	Ceftazidime	Cefuroxime	Imipenem	Maropenem	Gentamicin	Amikacin	Ciprefloxacin	Levolloxacine	Trime-sulfametho	Chloramphenicol	Erythromycln	united by the second se	Vancomycin	Fosfomyan	Collstin
				T	óng số	chún	ıg VSV p	phân lậ	ip dượ	rc/ Tón	g só m	āu: 5	146/2	2572	1=20	.01%									
Escherichia coll	97.3- (377			79.40	-	16.00 (475)		10000	-	90,10	83.08	89.81	7.54	C T	53.54	3.11	71.45		69.93 (479)						0.00 (362)
Klebsiella pneumoniae	100			91.79 (524)	81.19 (734)	41.88	64.80	40.64	74.00	87.99	86.20	88.59	32.14	30.23	62.39		51.08	43.98	80.10 (734)					4.39	1.63 (732)
Salmonella OMA + OMB	67.27 (55)	7								24.00 (50)			0.00 (54)				7.27 (55)		and the second se	60.00 (55)					
Sizabethkingia neningoseptica						11.85 (194)		13.47 (193)								51.81 (193)	19.07 (194)		56.70 (194)			57.73 (194)	23.58 (195)		
cinetobacter spp.					60.55 (654)	71.14 (655)				80.31 (442)	79.93 (658)		75.57 (655)	75.80 (653)	73.59 (659)	61.45 (659)			75.15 (652)				(12.64 (435)	-
seudomonas aeruginosa						6.97 (258)			21.07 (261)		29.27 (263)		37.77 (270)	32.56 (261)	24.52 (261)	18.00 (261)		24,32 (269)						9.88 (253)	0.00
urkholderia cepacia							95.02 (553)				11.17 (564)			12.35 (536)				1,95 (563)	1.77 (564)	4.61 (520)					I
enotrophomonas altophilla							5.08 (236)				61,44 (235)							5.50 (236)	8.86 (237)						
eg-Negative phylococcus spp.		97.60 (209)	2 1 2 C 1 2												52.91 (206)		44.67 (197)		57.14 (210)			71.05 (38)			
phylococcus aureus		99.75 (400)	82.33 (402)												34.96 (389)		37.19 (242)		17.18						
ptococcus pneumonias		64.83 (31)																5,18 (155)			90.37 (135)	Contraction of the local division of the loc			
	4.03	75.96 (104)															75.00	Colling and the second	1 State 1				18.3		
ptococcus spp.		10.52 (19)							15.78 (19)	30.00 (10)										11.1		Cold Street Street	45 0.0	00	T

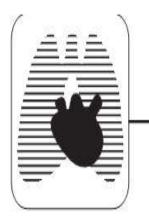
MDR situation in nosocomial pneumonia

Medscape

Advantages of IV Colistin

Disadvantages of IV Colistin

- After parenteral administration, colistin achieves low protein binding, approximately 50%.
- About two thirds of CMS is eliminated as unchanged mainly by the renal route within 24 h.
- Containing colistin >4 μ g/ml killed bacteria.
- Poorly distributed to the bones, cerebrospinal fluid, lung parenchyma, and pleural cavity.
- Nephrotoxicity and Neurotoxicity


• Evidence of aerosolized colistin in MDR nosocomial

Cashuau			SEARCH
Cochran Library	IC Trusted evidence. Informed decisions. Better health.		Title, Abstract, Keywords ▼ Search > Medical Terms (MeS Search Manager >
CHRANE REVIEWS		OTHER RESOURCES	
Topic New Reviews Updated R	eviews A-Z By Review Group	Other Reviews Trials Methods Studies Technology Assessments Eco	nomic Evaluations
Title	Export Central Citation	nt of nosocomial pneumonia due to gram negative multi-drug resistant pa	anogens in chicany in patients. Links
nuo		ni or nosoconnar priodinorna dae to gran nogative mati-urag resistant pe	anogens in chacany in patients. Links
Author(s)	Amin M, Rashad A, Fouad A, Abde	I Azeem A	
Source	Egyptian Journal of Chest Diseases	s and Tuberculosis	
	2013		
Date of Publication	62		
Date of Publication Volume	02		
A DECK PROVIDENT OF A DECK	3		
Volume			
Volume Issue	3	s And Tuberculosis (Egypt)	
Volume Issue Pages	3 447-51	s And Tuberculosis (Egypt)	

Age, years (mean \pm SD)	55.6 ± 21.9	60.5 ± 4.5	>0.05
Sex (male) n/N (%)	15/28 (54%)	7/12 (58%)	> 0.05
Apache II score (mean \pm SD)	18.1 ± 5	19.1 ± 7	> 0.05
Co morbidity n/N (%)			
Cardiovascular	11/28(40%)	5/12(39)	> 0.05
Pulmonary	6/28(20%)	3/12(22%)	> 0.05
DM	9/28 (30%)	4/12 (29%)	> 0.05
Hepatic injury	2/28 (5%)	1/12 (8%)	> 0.05
Hematological	3/28 (8%)	1/12(8%)	> 0.05
Neurological	6/28(20%)	3/12(18%)	> 0.05
Previous hospitalization n/N (%)	6/28(20%)	3/12 (18%)	> 0.05
Previous antibiotic use n/N (%)	9/28 (30%)	4/12 (33%)	> 0.05
Duration of hospitalization until the1st day of colistin (mean \pm SD)	15.3 ± 9.5	13.5 ± 7.5	> 0.05
Duration of ICU stay till 1st day of colistin, (mean ± SD)	9.8 ± 4.5	11.5 ± 3.8	> 0.05
Duration of MV till the 1st day of colistin	7.6 ± 4.3	8.1 ± 6.1	>0.05
Special treatment n/N (%)			
Blood transfusion	16/28 (60%)	10/12 (80%)	< 0.05
L-thyroxin	3/28 (10%)	2/12(16%)	> 0.05
Urinary catheter n/N (%)	28/28(100%)	12/12(100%)	> 0.05
Tracheostomy n/N (%)	14/28(50%)	7/12(58%)	> 0.05
Bronchoscopy n/N (%)	6/28(20%)	2/12 (18%)	> 0.05
i.v. colistin, days (mean \pm SD)	15.3 ± 8.7	14.1 ± 9.4	< 0.05
Dosage of i.v. colistin, IU (mean \pm SD)	9.2 ± 16	8.4 ± 20	> 0.05
Responsible pathogens, n/N (%)			
Acinetobacter baumannii	18/28 (65%)	8/12 (70%)	> 0.05
Pseudomonas aeruginosa	7/28 (25%)	3/12 (25%)	> 0.05
Klebsiella pneumonia	3/28 (10%)	1/12 (12%)	> 0.05
Outcomes; n/N (%)			\bigcap
Cure	22/28 (78%)	7/12 (60%)	< 0.05
Mortality	8/28 (28%)	5/12 (41%)	< 0.05

Conclusion: Colistin is a reasonable safe lastline therapeutic alternative for pneumonia due to MDR G-ve pathogens. Aerosolized colistin may be considered as a useful adjunctive to i.v. colistin.

> 2013 Production and hosting by Elsevier B.V. on behalf of The Egyptian Society of Chest Diseases and Tuberculosis

Original Research

CRITICAL CARE

Effect of Aerosolized Colistin as Adjunctive Treatment on the Outcomes of Microbiologically Documented Ventilator-Associated Pneumonia Caused by Colistin-Only Susceptible Gram-Negative Bacteria

Mario Tumbarello, MD; Gennaro De Pascale, MD; Enrico Maria Trecarichi, MD, PhD; Salvatore De Martino, MD; Giuseppe Bello, MD; Riccardo Maviglia, MD; Teresa Spanu, MD; and Massimo Antonelli, MD

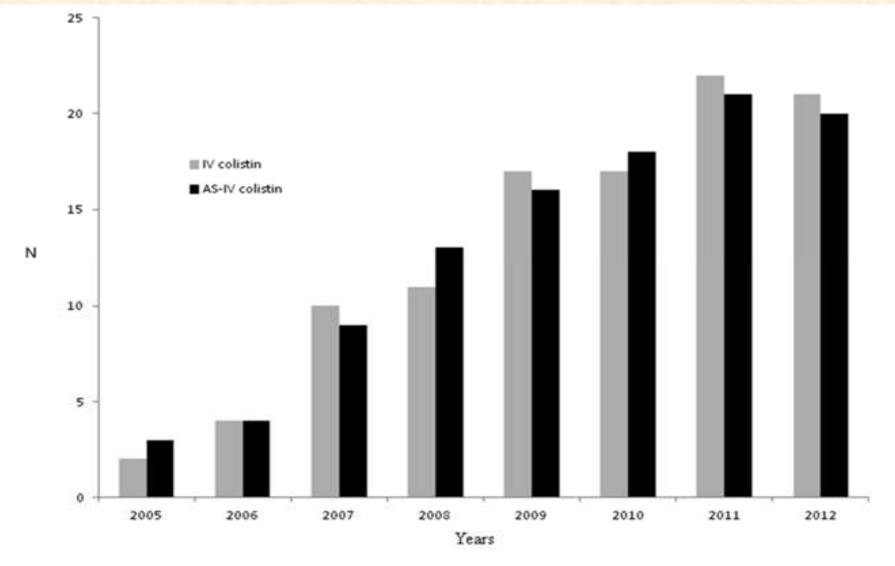


Figure 1. Temporal distribution of patients treated with IV colistin (IV cohort) and those who received IV and AS colistin (AS-IV cohort) in the study period. AS 5 aerosolized.

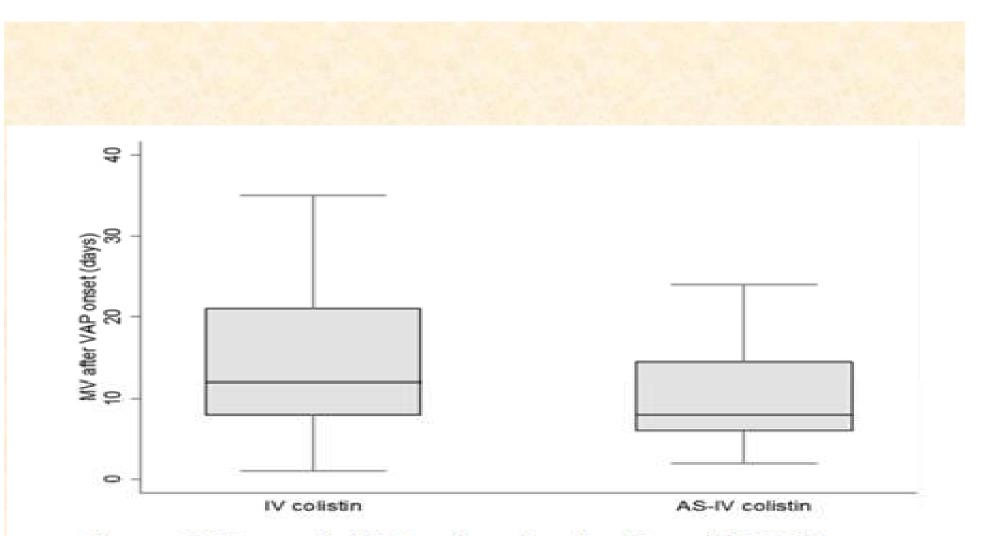


Figure 2. Box and whisker plots showing days of MV after onset of VAP in patients treated with IV colistin (IV cohort) and those who received IV and AS colistin (AS-IV cohort). MV duration was significantly shorter in the latter cohort (P_{\pm} .001). Boxes represent interquartile ranges (lower border, 25th percentile; upper border, 75th percentile) and median (50th percentile) (horizontal line within the box); whiskers indicate minimum and maximum values. MV 5 mechanical ventilation; VAP 5 ventilator-associated pneumonia. See Figure 1 legend for expansion of other abbreviation.

Table 1—Demographic and Clinical Char	acteristics of the 208 Patients	With VAP Included in the St	tudy					
	Treatment Cohorts-							
Variable	AS-IV Colistin (n 5 104)	IV Colistin (n 5 104)	P Value					
Patient characteristics on ICU admission								
Male sex	74 (71.1)	58 (55.8)	.02					
Age, median (IQR), y	64 (48.5-76.5)	66 (49-77)	.78					
Comorbidities on admission								
Diabetes mellitus	21 (20.2)	19 (18.3)	.72					
Chronic renal failure	7 (6.7)	14 (13.5)	.11					
Cancer	11 (10.6)	16 (15.4)	.30					
Cardiovascular diseases	41 (39.4)	42 (40.4)	.89					
COPD	21 (20.2)	28 (27.2)	.24					
Immunosuppression•	25 (24)	22 (21.2)	.62					
Type of ICU admission	//							
Medical	65 (62.5)	71 (68.3)	.38					
Surgical	14 (13.5)	13 (12.59)	.84					
Trauma-related	25 (24)	20 (19.2)	.40					
SAPS II on ICU admission, median (IQR)	45.5 (34-56)	46.5 (33-55)	.90					
Total days in ICU, median (IQR)	24.5 (13.5-44)	26 (16.5-39)	.73					
Characteristics of VAP	24.3 (13.3-44)	20 (10.5-59)						
	0.5 (01 7)	84 (80 7)	0.5					
Late onset-	85 (81.7)	84 (80.7)	.85					
CPIS at onset, mean SD	7.8 1.2	7.9 1.3	.87					
SOFA score at onset, median (IQR)	7 (6-12)	8 (5-11)	.75					
Causative organisms								
Acinetobacter baumannii	72 (69.2)	56 (53.8)	.02					
Pseudomonas aeruginosa	24 (23.1)	28 (26.9)	.52					
Klebsiella pneumoniae	8 (7.7)	20 (19.2)	.01					
Presenting features								
ARDS	12 (11.5)	11 (10.5)	.82					
Septic shock	46 (44.2)	46 (44.2)	1.00					
Concomitant bacteremia	24 (23.1)	29 (27.9)	.43					
CRRT at VAP onset	23 (22.1)	18 (17.3)	.38					
Treatment of VAP								
Inadequate initial antibiotic therapy	91 (87.5)	87 (83.6)	.43					
Duration of colistin treatment, median (IQR), d	7 (5-14)	10 (5.5-15)	.12					
Daily dose of IV colistin, mean SD, IU	(7.0 2.6) 3 10-	(7.3 2.4) 3 10.	.29					
Outcomes								
Clinical cure	72 (69.2)	57 (54.8)	.03					
Microbiologic cure	52 (63.4)	42 (50)	.08					
Days of MV after pneumonia onset, median (IQR)	8 (6-14.5)	12 (8-21)	.001					
Days in ICU and pheumonia onset, menian (IQK)	12 (7-22.5)	14 (8-22)	04					
Death in ICU	45 (43.3)	48 (46.1)	.67					
AKI during colistin therapy	26 (25)	23 (22)	.62					
and during contain mempy	20 (22)	au (au)	.94					

	IV Colistin	AS-IV Colistin	р
Clinical cure rate	54.8%	69.2%	0.03
Days of MV after pneumonia onset, median	12 days	8 days	0.001
Eradication of the causative organism	50%	63.4%	0.08
Septic shock at VAP onset	70.9%	27.9%	0.001
AKI during Colistin therapy	25%	22%	0.62 → No different
ICU mortality	No dif	ferent	27

International Journal of Antimicrobial Agents xxx (2015) xxx-xxx

International Journal of Antimicrobial Agents

journal homepage: http://www.elsevier.com/locate/ijantimicag

Review

Intravenous combined with aerosolised polymyxin versus intravenous polymyxinalone in the treatment of pneumonia caused by multidrug-resistant pathogens: a systematic review and meta-analysis

Dong Liu^a, Jing Zhang^b, Hai-Xia Liu^a, Ying-Gang Zhu^a, Jie-Ming Qu^{a,c,*}

^a Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China ^b Department of Pulmonary Medicine, Theorem Hamitel, Shanghai Medical College, Fudan University, Shanghai, China

ARTICLE IN PRESS

D. Lis et al. / International Journal of Antimicrobial Agents xxx (1015) xxx-xxx

Table 1 Characteristics of studies included in the systematic review and meta-analysis.

Author/year	Study type	Country	Infectious disease	Pathogen	Colistin manufacturer	Concomitant antibiotics	Conclusion
Bogovic et al., 2014 [19]	Retrospective	Croatia	ICU with VAP	Acinetobacter baumannii, Pseudomonas aeruginos a, Klebsiella pneumonia e	N/A	Yes, concurrently	IV-AS benefits microbiological outcome
Doshi et al., 2013 [20]	Retrospective	USA	ICU with NP	A. baumannii, P. aeruginosa, K. pneumoniae	N/A	Yes, concurrently	IV-AS was not better than IV
Tumbarello et al., 2013 [14]	Retrospective, case–control	Italy	ICU with VAP	A. baumannii, P. aeruginosa, K. pneumoniae	N/A	Yes, prior	IV-AS is better
Amin et al., 2013 [18]	Prospective	Egypt	ICU with NP	A baumannii, P. aeruginosa, K. pneumoniae	N/A	Yes, prior	IV-AS is better
Kalin et al., 2012 [16]	Retrospective	Turkey	ICU with VAP	A. baumannii	Koçak Farma, Istanbul, Turkey	Yes, prior	Higher doses and AS had no advantages
Naesens et al., 2011 [17]	Retrospective	Belgium	ICU with NP	P. aeruginosa	Forest Laboratories, Kent, UK	Yes, concurrently	AS could be beneficial as adjunctive treatment
Pérez-Pedrero et al., 2011 [21]	Retrospective	Spain	ICU with NP, TB, CO	A. baumannii	N/A	N/A	IV had the poorest effect compared with IV-AS or AS alone
Kofteridis et al., 2010[15]	Retrospective, case–control	Greece	ICU with VAP	A. baumannii, P. aeruginosa, K. pneumoniae	Norma, Greece	Yes, prior	Addition of AS did not provide benefit
Korbila et al., 2010 [13]	Retrospective	Greece	ICU with VAP	A. baumannii, P. aeruginosa, K. pneumoniae	Forest Laboratories, Kent, UK; Norma, Greece	Yes, concurrently	IV-AS was better than IV alone

ICU, intensive care unit; VAP, ventilator-associated pneumonia; N/A, not available; IV-AS, aerosolised and intravenous colistin; NP, nosocomial pneumonia; IV, intravenous colistin; AS, aerosolised colistin; TB, tracheobronchitis; CO, colonisation.

International Journal of Antimicrobial Agents 44 (2014) 477-485

Contents lists available at ScienceDirect

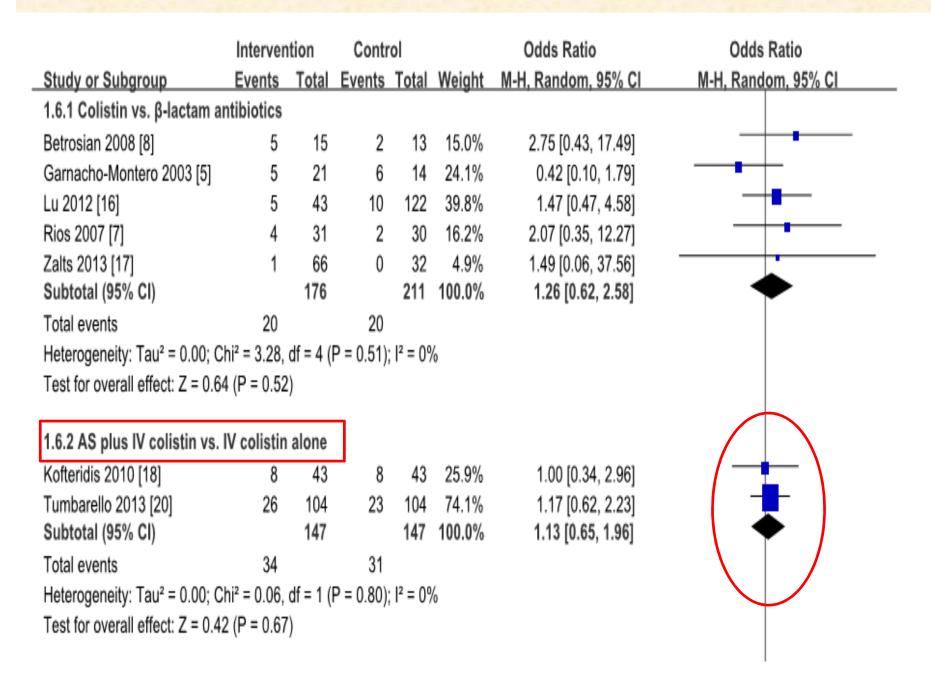
International Journal of Antimicrobial Agents

journal homepage: http://www.elsevier.com/locate/ijantimicag

Colistin for the treatment of ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: A systematic review and meta-analysis

Wan-Jie Gu^a, Fei Wang^b, Lu Tang^b, Jan Bakker^c, Jing-Chen Liu^{a,*}

^a Department of Anaesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China


^b Department of Anaesthesiology, General Hospital of Jinan Military Command, Jinan, China

^c Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, The Netherlands

Forest plot depicting clinical cure

	Interven	tion	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Colistin vs. β-lactam a	ntibiotics				-		
Betrosian 2008 [8]	9	15	9	13	6.1%	0.67 [0.14, 3.19]	
Garnacho-Montero 2003 [5]	12	21	8	14	8.0%	1.00 [0.25, 3.92]	
Kallel 2007 [6]	45	60	43	60	22.9%	1.19 [0.53, 2.67]	
Lu 2012 [16]	29	43	81	122	27.4%	1.05 [0.50, 2.20]	
Rios 2007 [7]	17	31	14	30	14.8%	1.39 [0.51, 3.80]	
Zalts 2013 [17]	31	66	18	32	20.8%	0.69 [0.29, 1.61]	
Subtotal (95% Cl)		236		271	100.0%	1.00 [0.68, 1.47]	•
Total events	143		173				
Heterogeneity: Tau ² = 0.00; C	hi² = 1.59,	df = 5 (P = 0.90);	l² = 0%	6		
Test for overall effect: Z = 0.0	1 (P = 0.99)					
1.1.2 AS plus IV colistin vs.	IV colistin	alone	1				
Kofteridis 2010 [18]	23	43	14	43	22.2%	2.38 [0.99, 5.72]	
Korbila 2010 [19]	62	78	26	43	25.1%	2.53 [1.11, 5.76]	
Tumbarello 2013 [20]	72	104	57	104	52.7%	1.86 [1.05, 3.27]	-∎-
Subtotal (95% CI)		225		190	100.0%	2.12 [1.40, 3.20]	
Total events	157		97				
Heterogeneity: Tau ² = 0.00; C	hi² = 0.46,	df = 2 (P = 0.79);	l² = 0%	6		
Test for overall effect: Z = 3.5	7 (P = 0.00	04)	1				

Forest plot depicting nephrotoxicity

Forest plot depicting intensive care unit mortality

	Interven	tion	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.3.1 Colistin vs. β-lactam a	ntibiotics						
Garnacho-Montero 2003 [5]	11	21	7	14	15.3%	1.10 [0.28, 4.26]	
Kallel 2007 [6]	25	60	21	60	51.3%	1.33 [0.63, 2.78]	-
Lu 2012 [16]	7	43	28	122	33.5%	0.65 [0.26, 1.63]	
Subtotal (95% CI)		124		196	100.0%	1.02 [0.60, 1.72]	•
Total events	43		56				
1.3.2 AS plus IV colistin vs I	V colistin	alone					
Kofteridis 2010 [18]	10	43	18	43	18.5%	0.42 [0.17, 1.07]	
Korbila 2010 [19]	28	78	18	43	27.7%	0.78 [0.36, 1.67]	
Tumbarello 2013 [20]	45	104	48	104	53.8%	0.89 [0.51, 1.54]	
Subtotal (95% CI)		225		190	100.0%	0.75 [0.50, 1.11]	
Total events	83		84				
Heterogeneity: Tau ² = 0.00; C	;hi² = 1.86,	df = 2 (P = 0.39);	² = 0%	6		
Test for overall effect: Z = 1.4	3 (P = 0.15)					

Recommendations for the use of AS-Colistin

The dosage recommended is:

• 40 mg (500,000 IU) every 12 h for patients with bodyweights of \leq 40 kg

• 80 mg (1 million IU) every 12 h for patients with bodyweights of >40 kg

Thank you for your attention !

